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Yes, you guessed it right! We’re going to look at solving traditional analytic problems with technologies 

behind deep learning.  In this broader context, the term “deep” is too limiting as the computation flow 

may takes any shape from a list of components stacked together (deep) to hierarchical (tree) to 

spaghetti (graph). And the term “learning” is intentionally misleading as solutions are reached with 

mechanic (dumb) maneuvers without understanding.    

From Control Theory to Deep Learning 
When I was struggling though my Advanced Automatic Control Theory class, I was wondering when I 

would ever get to use these stuffs. Well, now that I’m talking about deep learning, I can’t start without 

mentioning feedback control, the mechanism that gave birth to the whole industrial revolution, and now 

powering the AI revolution, and, if you indulge with me, how those billions of neurons might actually 

work in human brain.  

 

Feedback control is ignorant, which is rightfully touted as a virtue in the control theory circle: “feedback 

control system is easy to implement, because it requires no knowledge of the source or nature of the 

control parameters, nor does it require much information about how the system itself works. Feedback 

control action is entirely empirical (a.k.a. numerical, computational).” 

Using one of the gradient based nonlinear optimizer such as stochastic gradient descent(SGD) to do the 

“Optimization”, renaming “Feedback” as “Loss” and the backward path as “backpropagation”, labeling 

your system as “deep” and marketing the mechanic updates of gradients as “learning”, you got what 

everybody is talking nowadays: deep learning!  
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Deep learning only uses the “D” part of the most widely used PID controller. To the deep learning 

developers here at SAS, finding ways to incorporate integral and proportional components in the 

optimizer might put us ahead of the AI competition. In below block diagram of a PID controller in a 

feedback loop, y(t) is the measured outputs and r(t) is the expected outputs. 

 

To be fair, deep learning folks’ contributions lie in those ingenious architectures, the specific intricate 

arrangements of the specially purposed computational components (ReLU, pooling, embedding…),  

enabling their system to exhibit intelligent behaviors indistinguishable from or even better than that of 

human. By and large, deep learning architecture design is a try-and-error art, rather than science. This is 

evident from the designer names attached to popular architectures: LeNet, AlexNet, ZF Net, 

GoogleLeNet… Therefore, the competitive advantage of AI lies in architecture design. We may 

reimplement existing architectures or resolve problems that are better solved by others all day, only 

when we come up with our own branded architecture such as SasOR_MIP_NET or ViyaFcstNet for 

problems others haven’t looked at, we’re in the league of leaders of AI.  
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https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/pdf/1311.2901v3.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Szegedy_Going_Deeper_With_2015_CVPR_paper.pdf


 



What TensorFlow Really Is 
If you associate TensorFlow with only cat pictures and deep learning, I don’t blame you, but you’re 

missing the forest for the trees. From their official self-description of “end-to-end open source platform 

for machine learning”, even the TensorFlow people don’t realize its true potential. 

TensorFlow is a platform to develop and deploy any software-implemented system that can be modeled 

with differentiable programming. You only need to tell TensorFlow three aspects of your system: 

1. What are the control parameters of your system (controls, knobs)? 

2. How to compute outputs from inputs (the forward path)?  

3. How to compute loss from computed and expected outputs (the feedback)? 

TensorFlow will figure out (via the backward path) and tell you the optimized values of the control 

parameters, which is effectively the structure of your system.  TensorFlow does it by minimizing the loss 

function w.r.t. the control parameters, with one of the gradients based non-linear optimization 

algorithm.  

 

Differentiable Programming 
TensorFlow is a programming language with which you describe how your system works and a tool chain 

which automates away the differentiation and optimization of your program. The way you tell 

TensorFlow about your system is encoding your system structure in programming statements that is 

continuous and differentiable.  

Let’s start with a simple system y = x2 , which we all know is continuous and differentiable with y’=2x.  

You set x to 1.0 and ask TensorFlow  what the gradient of y w.r.t. x at that point, you get 2.0!  

x = tf.Variable([[1.0]]) 

with tf.GradientTape() as tape: 

  y = x * x 

 

grad = tape.gradient(y, x) 

print(grad)   

 

# => 2.0 



 

For another example, let’s look at a system y=cos(x) where y is the output and the loss, and x are both 

the input and the only control parameter. 

x = tf.Variable(initial_value=3.0) /* control parameter */ 

y = tf.cos(x)                      /* x => y */   

tf.train.GradientDescentOptimizer(learning_rate=0.01).minimize(y) 

 

If you look at the compute graph generated by TensorFlow, you’ll notice alongside the branches 

corresponding to your system y=cos(x), TensorFlow figures out how to compute gradients for your 

system: y’ = -sin(x) !  

 
 

Automatic differentiation is the technique that does the magic and not only the cos() function is 

differentiable, matrix multiplication, conditionals, loops, branches and recursions are all amenable to 

autograd , giving you expressive power to model your system.  

As you can see by now, once your system is modeled with differentiable programing statements, you 

can delegate the search for the optimal system structure to TensorFlow.  

https://en.wikipedia.org/wiki/Automatic_differentiation
https://www.tensorflow.org/tutorials/eager/automatic_differentiation


Linear Regression the Differentiable Programming Way 
With slope (beta1) and intercept (beta0) as the control parameters and mean squared error as loss 

function, we may solve the linear regression problem with a gradient descent optimizer . 

# Inputs 

X = tf.placeholder("float")  

Y = tf.placeholder("float")  

 

# What are the control Parameters ? 

beta1 = tf.Variable(0.3, dtype = tf.float32, name = "beta1")  

beta0 = tf.Variable(0.0, dtype = tf.float32, name = "beta0")  

 

# How to compute outputs from inputs? 

y_pred = tf.add(tf.multiply(X, beta1), beta0)  

 

# How to compute loss function from outputs and expected 

#  outputs? Mean Squared Error (MSE) 

loss = tf.reduce_sum(tf.pow((y_pred - Y), 2)) / (2*n) 

 

# Optimizer  

optimizer = tf.train.GradientDescentOptimizer(0.01).minimize(loss)  

   

# Global Variables Initializer  

init = tf.global_variables_initializer()  

 

# Tensorflow Session  

with tf.Session() as sess:  

    # Initializing the Variables  

    sess.run(init)  

 

    # Iterating through all the epochs  

    for epoch in range(100):  

        # Feeding data into the optimizer using Feed Dictionary  

        for (_x, _y) in zip(px, py):  

            sess.run(optimizer, feed_dict = {X : _x, Y : _y})  

           

    # Retrieve values for use outside the Session  

    loss_val = sess.run(loss, feed_dict ={X: px, Y: py})  

    weight   = sess.run(beta1)  

    bias     = sess.run(beta0)  

     

    # Calculate the predictions  

    predictions = weight * px + bias  

 

Linear Regression the Theoretical Way 
We all know for simple linear regression there is the theoretical optimal parameter estimates which 

involves only matrix operations.  Complete with a linear algebra package, TensorFlow can be used as 

IML to solve linear regression algebraically:      

    ones = np.ones(n) 

    X_matrix = np.matrix(np.column_stack((px, ones))) 

    Y_matrix = np.transpose(np.matrix(py)) 

 

https://towardsdatascience.com/linear-regression-using-gradient-descent-97a6c8700931


    X_tensor   = tf.constant(X_matrix) 

    Y_tensor   = tf.constant(Y_matrix) 

    XtX_tensor = tf.matmul(tf.transpose(X_tensor), X_tensor) 

    XtY_tensor = tf.matmul(tf.transpose(X_tensor), Y_tensor) 

 

    sol = tf.matmul(tf.matrix_inverse(XtX_tensor), XtY_tensor) 

    soln_opt = sess.run(sol).tolist() 

    weight_opt, bias_opt = soln_opt 

 

    # Calculating the predictions  

    predictions_opt = weight_opt * px + bias_opt  

    sess.run(beta1.assign(weight_opt[0])) 

    sess.run(beta0.assign(bias_opt[0])) 

    loss_opt = sess.run(loss, feed_dict ={X: px, Y: py})  

 

Probabilistic Programming 
It’s fair to say deep learning in specific and differentiable programming in general knows no math, 

because if you can express the forward path and loss function of your system with programming 

statements (not much math), frameworks like TensorFlow automatically (with lots of math) finds the 

solution for you. This “for dummy” approach enables data analysts and even high schoolers to build AI 

models by brute force. A data scientist may come up with the perfect loss function quickly, but data 

analysts and high schoolers alike can eventually get there by try and error.  

Is there a “for dummy” approach for people who knows and can model prior knowledge of their system 

with college level math? Enter probabilistic programming.  

The probabilistic approach of problem-solving starts with modeling the uncertainty of  a system with a 

joint probabilistic distribution on variables whose values are known (observed) and 

variables/parameters whose values are typically unknown (latent). Also known as the generative model, 

the joint distribution is normally constructed bottom up from proposal (prior) distributions of observed 

and latent variables. The solution of the system is reached by inference tasks such as parameter finding 

for posterior distributions or expected values calculation of various statistics on conditional 

distributions. Again, a probabilistic programming system enables probabilistic modeling of your system 

with programming statements and automates away the math and computational heavy inference tasks 

for you.       

With probabilistic programming system all you need to do is: 

1. Provide proposal distributions for the parameters (latent variables) of your system. 

2. Construct the joint distribution of the observed target variable (Y) in terms of the latent 

parameters (β) and the observed input variables (X).   

The probabilistic programming system will automatically infer the marginal distributions of the 

parameters conditioned on the observed input and target variables. Monte Carlo simulation or 

variational optimization, you don’t need to care the math behind and implementation details of the 

inference engine.     

https://github.com/google/edward2


Linear Regression the Probabilistic Programming Way 
It’s only natural for us to resolve our simple linear regression problem again, with probabilistic 

programming approach. As taught in every regression class, we assume Y to be normally distributed 

with an unknown variance, which is normally distributed itself. We also assume the slope and intercept 

of the regression line follows a normal distribution.   

 

Below Python program encode our assumptions into programming statements: 

import pymc3 as pm  

with pm.Model() as model:  

    # Define prior distributions of parameters 

    beta0 = pm.Normal('beta0', 0, sigma=20) 

    beta1 = pm.Normal('beta1', 0, sigma=20) 

    sigma = pm.HalfCauchy('sigma', beta=10, testval=1.) 

 

    # Define likelihood (sampling joint distribution) 

    jointDist = pm.Normal('Y', mu = beta0 + beta1 * px, sigma=sigma, observed = py) 

 

    # Inference!  

    start = pm.find_MAP(model=model) 

    step  = pm.Metropolis()      

    trace = pm.sample(1000, step=step)  

 

estimate = pm.summary(trace) 

predictions_pp = estimate.at['beta0','mean'] + estimate.at['beta1','mean'] * px   

pm.traceplot(trace) 

 

In the inference phase, we take samples from the proposal parameter distributions (orange in below 

graph), accept or reject the proposal based on observed data. The result is a posterior distribution (blue) 

of our parameters with the peak being the optimal parameter estimates. Better yet, we got the 

uncertainty of those parameter estimates for free! 
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Which Way is Better? 
Theoretical approach produces the optimal solution, but it takes a master or Ph.D. level data scientist 

who understand the math to program it. On the other hand, the differentiable and probabilistic 

programming way requires only rudimentary math. Also let’s not forget, for those problems that are too 

complex to tackle theoretically, the differentiable and probabilistic programming way maybe the only 

practical way.     

Approach Differentiable 
Programming 

Theoretical 
Probabilistic 
Programming 

Ground  
Truth 

Loss (MSE) 0.134 0.132 - - 

Slope (beta0) 1.27 1.15 1.16 1.0 

Intercept (beta1) 1.53 1.74 1.75 2.0 

Run time (seconds) 196.22 0.096 8.85 - 

 



 

Differentiable vs Probabilistic Programming 
With two styles of programming solving the largely overlapping problems, a comparative study of the 

two follows: 

 Differentiable Programming Probabilistic Programming 

Prior Model Model-less Prior distributions on latent parameters 

Work  
automated away 
(democratized?) 

Model fitting Inference (Monte Carlo, Variational) 

Output Model Discriminative, parameters of  
𝑃(𝑌ȁ𝑋) 

Generative, parameters of joint distribution 
𝑃(𝑋, 𝑌) 

Computational 
technologies 

Auto-gradient, Optimization 
(Gradient based nonlinear 
optimizer) 

Sampling, Distribution conditioning 

Model 
Interpretation 

Not possible, don’t waste time! Strong foundation in Bayesian statistics 

Applications  Scene perception, simulation-based models, 
state estimation 

 

Computational Approach to Problem Solving 
When it’s too complex or expensive to understand and solve a problem theoretically, we resolve to 

solutions obtained by computational approaches. The history of science and mathematics has seen this 

pattern again and again, in mechanics, fluid dynamics, chemistry, finance, and recently AI. Almost all 

computational approaches can be thought of as simulation: following basic principles of the problem 

domain, evolve the solution by heuristics (divide and conquer, GRASP, SGD…) until stopping criterion 



(epoch, epsilon…) is met. Differentiable and probabilistic programming are such computational 

approaches.       

Solution 
 

Domain 
Theoretical Computational 

Mechanics 

Partial Differential Equations (PDE)  
 

 

Finite Element Analysis 
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AI 

Expert System,  
Propositional Logic, 
First Order Logic, 
Description Logic,  
Ontology, 
Semantic Web, 
Cyc.com  … 

Deep Learning 

 

Statistics 

Linear Regression 
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OR 
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Greenfield… To be explored… 

 

Damn, West Coast Folks are Already on It 
Just as I thought I discovered a new world where we can be the first mover, news came that Google and 

Amazon are already applying deep learning techniques to statistical and forecasting problems. Given 

their histories of developing new then open sourcing/publishing old technologies, they must have used 

them for quite a long time in their business operations.   



• TensorFlow Probability (TFP) from Google, which is a Python library built on TensorFlow that 

makes it easy to combine probabilistic models and deep learning on modern hardware (TPU, 

GPU). TFP offered probabilistic programming on top of differentiable programming that comes 

with TensorFLow.  

• GluonTS from Amazon,  which is a library for deep-learning-based time series modeling.  

• Prophet from Facebook, which is a forecasting library based on probabilistic programming. A 

modeless computational approach by nature, it “(produce) a reasonable forecast on messy data 

with no manual effort. … is robust to outliers, missing data, and dramatic changes in your time 

series”.  

Please don’t laugh at their lack of theoretical and practical knowledge in the analytics domains that we 

excel. Their superior command of the computational technologies may soon render domain specific 

theory and knowledge unnecessary to obtain good enough solutions.  To maintain the leader position, 

we must humbly learn about the computational technologies from them and combine our deep domain 

knowledge with computational approaches in our solution.  

Summary 
For analytics problems or part of the problem that are theoretically intractable, we could exploit the 

computational techniques behind deep learning: Differentiable Programming. Together with 

probabilistic programming (simulate the task and see what happens), we have two ways of getting a 

solution to a problem without having to analyze it mathematically.  

With objective function being the first piece of any optimization problem model, Operations Research 

(OR) is a natural fit to benefit from the deep learning paradigm. But I’m not in the position to say 

whether the constraints of OR problems break the “continuous and differentiable” requirement of 

differentiable programming. The point is, for the traditional analytics folks, there is this thing from 

neighboring AI community that can help to solve your problems! 

There you have it, differential and probabilistic programming, the forest behind the specimen tree called 

“deep learning”. Ten years from now when you look back at the stage of AI as is now, you’ll see that 

computer vision and NLP are just two small fish AI can catch. Differentiable and probabilistic 

programming are the way of fishing to catch them and other bigger fish in the days ahead!  
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