
Open
Last updated 6/25/2019 | Personal Opinion

“Open” is a virtue made from the reality that no single analytics vendor has everything customer want

and the need to get things done by maneuvering two or more tools simultaneously. If you expect a

carpenter to use only BLACK+DECKER tools, no matter how complete your product line is, you’ll be

disappointed.

Openness resides at different levels of the analytics platform stack, it has directions, and it may take

different styles of integration. Software that is open doesn’t have to be open sourced.

Language Level Hybrid Integration
Mixing different programming languages together in one program has been done through and though.

However, they’re done almost always out of desperation. When Python is intolerably slow, you turn the

compute intensive part into a C function and call it from within the Python program. When C is too

slow? You call into assembly language from within the C program. The context switching and

handshaking between different languages are so counterproductive that the hybrid approach should be

avoided as much as possible.

To use a piece of compute written in Lang2 within Lang1, you’d interleave the two languages together

as shown below:

Integration Style

Le
ve

l

Lang1 Lang2

Lang1

Lang1

binding

of Lang2

Lang1 Lang2 Lang1

Hybrid Native

Language

Data

• One way

• Two way

Lang2

GUI
Lang1 Lang2

To consume a piece of code written in Python or R from within SAS, this is the only viable approach. In

fact, SAS the company developed at least seven different ways of bringing open source software (OSS)

into the SAS world. See the “Appendix A: OSS => SAS Integration” section later for details.

Language Level Native Integration
The “Lang2 binding” of a library written in Lang1 is a wrapper library written in lang2 which surfaces the

library’s API in syntax that are native to Lang2, so that a library written for one language can be used in

another language natively.

This is the preferred approach to bridge two languages and examples are abundant: H2O’s main

algorithms are written with Java (!?) but it has bindings for Python, R and Scala. SAS Viya CAS actions are

written with C/C++ but they provide Python, R, Lua bindings…

Data Level Hybrid Integration
Rather than calling a different language directly, a more modular way of consuming analytical

functionalities implemented in another language is reading in the result data set produced by the other

language. If the host language doesn’t understand the format of the foreign data set, additional data

conversion steps need to be carried out, possibly in both languages.

In below example, a pickle data frame foo produced by Python must be exported into CSV then

imported into SAS before it can be consumed by SAS program.

Lang1 Lang2

Lang1

Lib

Lang2

Binding

Lang3

Binding

Lang4

Binding

https://en.wikipedia.org/wiki/Language_binding
http://sww.sas.com/saspedia/SWAT_architecture

Data Level Native Integration
When a language is equipped with data readers for data produced in other languages, the data set in

foreign formats appears to be native for the host language.

Since Python and R can read SAS data set (reverse engineered), it’s only logical for SAS to return the

favor with a libname engines for popular Python and R data formats such as pickled data frames, RDS or

RDATA.

SAS

libname py engine=pickle path=’C:\PyData’;

proc means data = py.foo;

GUI Level Integration
At GUI level, the ugly hand-shaking code of the hybrid approaches can be hidden from user. As shown

below in SAS Viya Model Studio open source code node, users write pure Python code, without knowing

that code is actually saved in a file and submitted for execution through a combination of SAS data step

and Java code. The hand-shaking code is automated on user’s behalf.

Lang1 Lang2

Lang1

Since I currently work in a SAS shop, I don’t have much exposure to other commercial visual point-n-click

analytic applications. But I’m sure there is a “code node” in each of them where you can happily type

away custom code to implement the functionality not offered off the shelf.

Appendix A: Open Source Software(OSS) => SAS Integration
Unfortunately, all available routes of integration from OSS to SAS must go through at least one of its

proprietary languages. In one piece of the work I did, I found myself inadvertently mixed four different

languages (Data Step, CASL, FCMP, Python) in one program! Hybrid it is!

Rants aside, if you find yourself in the situation of needing to make use of a piece of Python or R code in

SAS, here are seven of your choices. I’m not surprised but please let me know if I missed any!

In what I call the “Shell-out” style integration, OSS code is shipped out of the SAS process for execution.

Outputs of the OSS code is dumped to disk and picked up by SAS process or solution which initiates the

execution. The OSS code must be written and edited in an editor outside of SAS. This style is suited

when the OSS outputs are not just one or an array of numbers. Most of the GUI level integration such as

the open source code node in SAS Viya Model Studio relies on this “shell-out” integration behind the

scene.

In the RPC-style integration, you assemble your OSS code line by line from within one of the SAS procs.

The input and outputs of your OSS code lives within the context of the hosting SAS proc. The SAS proc is

responsible to send your OSS code for execution and retrieve the results back into the context of the

proc. This style is suited for cases where the OSS code logic is complex, but the result is simple.

Data step > CALL SYSTEM Routine
CALL SYSTEM Routine submits an operating environment command for execution. If you strip away the

SAS specific syntax such as “data _null_” and “call system” in below code, you’re as if

submitting commands in an operation system shell.

data _null_;

 call system('C:\Python37\python.exe c:\ossi\hist.py');

run;

Data step > Java Object component
For those who develop solutions within the confines of the Java ecosystem, there is an unofficial

SASJavaExec class, which is the Java equivalent of SAS “CALL SYSTEM” routine. The SASJavaExec

Base

 Data Step IML

Java Object CALL SYSTEM

Pipes DS2 TSMODEL

2.43

Shell-out style

RPC style

Dump

Pick up

Language Level Hybrid OSS Integration

MAS

FCMP

code

code
result

https://go.documentation.sas.com/?docsetId=lefunctionsref&docsetTarget=p089n536m1spv9n1cpuo8u34hw5m.htm&docsetVersion=9.4&locale=en
https://github.com/sassoftware/enlighten-integration/tree/master/SAS_Base_OpenSrcIntegration/src/dev

class takes as parameters an executable and the code file to execute. The “executeProcess”

method of the SASJavaExec data step object initiates the execution of the code file.

data _null_;

 length rtn_val 8;

 declare javaobj j("dev.SASJavaExec", /* The class */

 "C:\Python37\python.exe", /* The executable */

 "C:\ossi\hist.py"); /* The code file */

 j.callIntMethod("executeProcess", rtn_val);

run;

This method requires knowledge of compiling java code and modifying SAS’s configuration, as described

in this paper.

Base SAS pipes
A pipe is an operating system facility to pump one program’s output to another program’s input. Base

SAS exposes unnamed pipe as a device type for a fileref.

filename fn pipe 'C:\Python37\python.exe C:\ossi\hist.py';

data _null_;

 infile fn;

 input;

 put _infile_;

run;

The nice thing is, any console output s from the Python program are routed to and displayed in SAS log.

This is a big improvement in terms of interactivity compared with the CALL SYSTEM and Java object

approaches. One of fellow SAS customer, frustrated with our lack of support to use R in SAS, built a fully

interactive open source software integration experience around pipes. You edit R/Python code inside

SAS editor, execute and see their outputs right in SAS’s log and results window!

The “PROC_R” macro solicits the open source code from user which is wrapped around by a cards4

statement. The “Run_R” macro then executes the code, displays all images produced by the code and

coverts R dataset to SAS data set as requested.

%include "C:\ossi\Proc_R.sas";

%Proc_R(SAS2R=,R2SAS=);

cards4;

R code

setwd("c:/ossi/Proc_R_Test")

C <- complex(real=rep(seq(-1.8,0.6, length.out=m), each=m),

 imag=rep(seq(-1.2,1.2, length.out=m), m))

C <- matrix(C,m,m)

Z <- 0 # initialize Z to zero

X <- array(0, c(m,m,20)) # initialize output 3D array

for (k in 1:20) { # loop with 20 iterations

 Z <- Z^2+C # the central difference equation

http://support.sas.com/documentation/cdl/en/lrcon/62955/HTML/default/viewer.htm#a003252712.htm
https://support.sas.com/rnd/app/data-mining/enterprise-miner/pdfs/SAS_Base_OpenSrcIntegration.pdf
https://en.wikipedia.org/wiki/Anonymous_pipe
http://support.sas.com/documentation/cdl/en/hostwin/69955/HTML/default/viewer.htm#n16puwsro9pakqn1jamy1vwyaqx6.htm
https://www.jstatsoft.org/article/view/v046c02

 X[,,k] <- exp(-abs(Z)) # capture results

}

write.gif(X, "Mandelbrot.gif", col=jet.colors, delay=100)

End R code

;;;;

%run_R;

While adapting the “PROC_R” macro into my own “PROC_Py”, I had trouble displaying images… It’s time

for SAS to provide official PROC R and PROC PYTHON so me and many of colleagues don’t have to waste

time on similar efforts!

PROC TSMODEL
Recently open source code support has been added within PROC TSMODEL. In below example, you

declare a Python object, built up Python code line by line, run the code all from within proc TSMODEL.

PROC TSMODEL DATA=sascas1.air OUTARRAY=sascas1.outarray

OUTSCALAR=sascas1.outscalar OUTOBJ=(log=sascas1.extlog);

ID date INTERVAL=MONTH;

VAR air;

OUTSCALAR runtime;

OUTARRAY pyair;

REQUIRE extlang;

SUBMIT;

 /* Copy input variable AIR into PYAIR */

 do i=1 to _LENGTH_;

 pyair[i] = air[i];

 end;

 /* Run the Python interpreter */

 declare object py(PYTHON2);

 rc = py.Initialize();

 rc = py.PushCodeLine('AIR *= 10');

 rc = py.AddVariable(pyair,'ALIAS','air','READONLY','FALSE');

 rc = py.Run();

 runtime = py.GetRuntime();

 /* Store the execution and resource usage statistics logs */

 declare object log(OUTEXTLOG);

 rc = log.Collect(py,'ALL');

ENDSUBMIT;

RUN;

Behind the scene, the External Languages Package (“package” being a special artifiact limited to the

TSMODEL procedure) provides objects that enable seamless integration of external-language programs

into TSMODEL procedure.

PROC FCMP
As detailed in his blog, Mike Zizzi shows how to program Python code from within PROC FCMP.

https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=castsp&docsetTarget=castsp_extlang_sect001.htm&locale=en
https://go.documentation.sas.com/?cdcId=pgmsascdc&cdcVersion=9.4_3.5&docsetId=castsp&docsetTarget=castsp_intro_sect002.htm&locale=en
https://blogs.sas.com/content/sgf/2019/06/04/using-python-functions-inside-sas-programs/?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+TheSasTrainingPost+%28The+SAS+Learning+Post+-%3E+SAS+Users%29

proc fcmp;

/* Declare Python object */

declare object py(python);

/* Create an embedded Python block to write your Python function */

submit into py;

def MyPythonFunction(arg1, arg2):

 "Output: ResultKey"

 Python_Out = arg1 * arg2

 return Python_Out

endsubmit;

/* Publish the code to the Python interpreter */

rc = py.publish();

/* Call the Python function from SAS */

rc = py.call("MyPythonFunction", 5, 10);

/* Store the result in a SAS variable and examine the value */

SAS_Out = py.results["ResultKey"];

put SAS_Out=;

run;

PROC IML
PROC IML provides integration from R. To get R integration, SAS must be started with the RLANG

system option. Calling R functions from within proc IML is well documented. To give you a feel, in below

example, R code is wrapped around proc IML “submit/R” statements. The output of the R print()

function is routed to SAS results window.

proc iml;

 submit / R;

 rx <- matrix(1:3, nrow=1)

 rm <- matrix(1:9, nrow=3, byrow=TRUE)

 rq <- rm %*% t(rx)

 print(rq)

 endsubmit;

quit;

PROC DS2 > MAS
SAS Micro Analytic Service (MAS) is a memory-resident, high-performance program execution service.

DS2 modules, running in SAS Micro Analytic Service, can publish and execute Python modules. As you

can see from below example, you must build up your Python program line-by-line!

data tstinput;

 a = 8; b = 4; output;

 a = 10; b = 2; output;

run;

proc ds2;

https://support.sas.com/rnd/app/studio/Rinterface2.html
https://go.documentation.sas.com/?docsetId=imlug&docsetTarget=imlug_r_sect003.htm&docsetVersion=15.1&locale=en
https://go.documentation.sas.com/?docsetId=imlug&docsetTarget=imlug_r_toc.htm&docsetVersion=15.1&locale=en
https://documentation.sas.com/?docsetId=masag&docsetTarget=p1dhh0p6zuvf9cn1bxhcstz51ddq.htm&docsetVersion=5.1&locale=en
https://go.documentation.sas.com/?docsetId=masag&docsetTarget=n17lpph1l0p8xjn194yt4vv3o1sa.htm&docsetVersion=5.2&locale=en

 data _null_;

 dcl package pymas py;

 dcl int rc revision;

 dcl double a b c d;

 method init();

 dcl varchar(256) character set utf8 pycode;

 py = _new_ pymas();

 rc = py.appendSrcLine('import math');

 rc = py.appendSrcLine('# Private function example:');

 rc = py.appendSrcLine('def privfunc(x, y):');

 rc = py.appendSrcLine(' return math.hypot(x,y),

math.atan2(x,y)');

 rc = py.appendSrcLine('');

 rc = py.appendSrcLine('# Public function example:');

 rc = py.appendSrcLine('def pubfunc(m, n):');

 rc = py.appendSrcLine(' "Output: o, p"');

 rc = py.appendSrcLine(' return privfunc(m, n)');

 pycode = py.getSource();

 revision = py.publish(pycode, 'ExampleModule');

 rc = py.useMethod('pubfunc');

 end;

 method run();

 set tstinput;

 rc = py.setDouble('m', a);

 rc = py.setDouble('n', b);

 rc = py.execute();

 c = py.getDouble('o');

 d = py.getDouble('p');

 put c= d=;

 end;

 enddata;

 run;

quit;

Appendix B: SAS Viya CAS => OSS Integration
Python-SWAT and R-SWAT are CAS’s Python and R bindings respectively. Regardless of the hosting

language, the workflow is the same. You create a CAS session then use it as a handle to access all CAS

functionalies: load action set, run actions…

import swat

Create CAS session

cas = swat.CAS(host, port, userid, password)

cas.loadactionset('percentile')

Execute CAS actions

tbl = cas.read_csv('https://raw.githubusercontent.com/'

 'sassoftware/sas-viya-programming/master/data/cars.csv')

https://github.com/sassoftware/python-swat
https://github.com/sassoftware/R-swat

out1 = cas.summary(table=tbl)

out2 = cas.percentile(table=tbl)

cas.close()

Appendix C: SAS => Python Integration
Saspy is a Python binding of SAS. When you call the means() function on the cars object, the call is

translated to “proc means data=cars; run;” If you’re not used to the Pythonian way of

programming, you can always drop back to the SAS way inside a sas.submit()call.

import saspy

sas = saspy.SASsession(results='HTML')

cars = sas.sasdata('cars', libref='sashelp')

cars.means() /* The MEANS procedure */

ll = sas.submit('''

data mycars; set sashelp.cars; myMSRP=0.001*MSRP;run;

''')

mycars = sas.sasdata('mycars', results='text')

mycars.head()

References
[1] More product specific OSS integration are available at GitHub.

[2] Amgen’s integration approach: proc groovy + Microsoft DeployR + R

[3] Matlab “provides a flexible, two-way integration with many programming languages, including

Python. This allows different teams to work together and use MATLAB algorithms within production

software and IT systems.”

[4] A SAS and Python double user compiles a list of resources integrate the two.

[5] A user’s experience of using Saspy. Another user’s instruction configuring Python and SASPy.

https://github.com/sassoftware/saspy
https://github.com/sassoftware/enlighten-integration/tree/master/SAS_Base_OpenSrcIntegration/src/dev
https://www.pharmasug.org/proceedings/2017/PO/PharmaSUG-2017-PO22.pdf
https://www.mathworks.com/products/matlab/matlab-and-python.html
http://blog.rubypdf.com/2018/10/12/python-for-sas-users/
https://www.lexjansen.com/phuse/2018/tt/TT10_ppt.pdf
http://www.scsug.org/wp-content/uploads/2018/10/McCarthy-How-to-configure-Python-and-SASPy.pdf

